8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials First Principles Studies of Multiferroic Materials

نویسندگان

  • Silvia Picozzi
  • Claude Ederer
چکیده

Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab-initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: a) proper multiferroics (where ferroelectricity is driven by hybridization or purely structural effects), with BiFeO3 as prototype material, and b) improper multiferroics (where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin, charge, or orbital ordering), with rare-earth manganites as prototypes. As for proper multiferroics, first-principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO3, ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the class of improper multiferroics, ab-initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (i.e. in antiferromagnetic E-type HoMnO3), the magnetically-induced ferroelectric polarization can be as large as a few μC/cm. The presented examples point the way to several possible avenues for future research: On the technological side, first-principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room-temperature. On the fundamental side, ab-initio approaches can be used to explore new mechanisms for ferroelectricity by exploiting electronic correlations that are at play in transition metal oxides, and by suggesting ways to maximize the strength of these effects as well as the corresponding ordering temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-orbit Coupling Effects in Multiferroic Bi2FeCrO6

For application in integrated sensors or devices, functional materials are used in the form of thin films. Ferroelectricity and many other properties of multiferroic materials, such as the magnetocrystalline anisotropy, are strongly related to the material crystal structure. Because fundamental physics of multiferroic materials is rich, theoretical studies are of great importance, since it is e...

متن کامل

First-principles study on the phase diagram and multiferroic properties of (SrCoO3)1/(SrTiO3)1 superlattices

To design a multiferroic material at atomic scale, strong spin-lattice and charge-lattice couplings play crucial roles. Our first-principles calculation on (SrCoO3)1/(SrTiO3)1 superlattices, with above coupling properties, yields a rich physical phase diagram as a function of epitaxial strain. In particular, a robust ferroelectric ferromagnetic insulator of Pc symmetry is stabilized at tensile ...

متن کامل

The Effect of Europium Doping on the Structural and Magnetic Properties of GdMnO3 Multiferroic Ceramics

Single phase Eu doped GdMnO3 ceramics were prepared using solid state reaction route. Several different characterization techniques were used to investigate the structural and magnetic properties of the samples, including X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and Vibrating Sample Magnetometer (VSM). All samples indicated single p...

متن کامل

First-principles study of spontaneous polarization in multiferroic BiFeO3

J. B. Neaton,1,* C. Ederer,2 U. V. Waghmare,3 N. A. Spaldin,2 and K. M. Rabe1 1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA 2Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California 93106, USA 3Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560 064, India sReceived ...

متن کامل

Entanglement and manipulation of the magnetic and spin–orbit order in multiferroic Rashba semiconductors

Entanglement of the spin-orbit and magnetic order in multiferroic materials bears a strong potential for engineering novel electronic and spintronic devices. Here, we explore the electron and spin structure of ferroelectric α-GeTe thin films doped with ferromagnetic Mn impurities to achieve its multiferroic functionality. We use bulk-sensitive soft-X-ray angle-resolved photoemission spectroscop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009